需要改两部分:驱动和android 上层的kl文件
驱动层修改:
/*
* Goodix GT9xx touchscreen driver
*
* Copyright (C) 2010 - 2014 Goodix. Ltd.
*
* Version: 2.4
* Release Date: 2014/11/28
*/
#include <linux/irq.h>
#include "gt9xx.h"
#if GTP_ICS_SLOT_REPORT
#include <linux/input/mt.h>
#endif
static const char *goodix_ts_name = "goodix-ts";
static const char *goodix_input_phys = "input/ts";
static struct workqueue_struct *goodix_wq;
struct i2c_client * i2c_connect_client = NULL;
int gtp_rst_gpio;
int gtp_int_gpio;
u8 config[GTP_CONFIG_MAX_LENGTH + GTP_ADDR_LENGTH]
= {GTP_REG_CONFIG_DATA >> 8, GTP_REG_CONFIG_DATA & 0xff};
#if GTP_HAVE_TOUCH_KEY
static const u16 touch_key_array[] = GTP_KEY_TAB;
#define GTP_MAX_KEY_NUM (sizeof(touch_key_array)/sizeof(touch_key_array[0]))
#if GTP_DEBUG_ON
//0 按下 1 松开
static int Backkeydown=0;
static int Homekeydown=0;
static int Menukeydown=0;
static int VolumeUpkeydown=0;
static int VolumeDownkeydown=0;
static const int key_codes[] = {KEY_HOME,KEY_MENU,KEY_BACK,KEY_VOLUMEDOWN,KEY_VOLUMEUP};
static const char *key_names[] = {"Key_Home", "Key_Menu", "Key_Back", "Key_Volumedown","Key_Volumeup"};
#endif
#endif
static s8 gtp_i2c_test(struct i2c_client *client);
void gtp_reset_guitar(struct i2c_client *client, s32 ms);
s32 gtp_send_cfg(struct i2c_client *client);
void gtp_int_sync(s32 ms);
static ssize_t gt91xx_config_read_proc(struct file *, char __user *, size_t, loff_t *);
static ssize_t gt91xx_config_write_proc(struct file *, const char __user *, size_t, loff_t *);
static struct proc_dir_entry *gt91xx_config_proc = NULL;
static const struct file_operations config_proc_ops = {
.owner = THIS_MODULE,
.read = gt91xx_config_read_proc,
.write = gt91xx_config_write_proc,
};
static int gtp_register_powermanger(struct goodix_ts_data *ts);
static int gtp_unregister_powermanger(struct goodix_ts_data *ts);
#if GTP_CREATE_WR_NODE
extern s32 init_wr_node(struct i2c_client*);
extern void uninit_wr_node(void);
#endif
#if GTP_AUTO_UPDATE
extern u8 gup_init_update_proc(struct goodix_ts_data *);
#endif
#if GTP_ESD_PROTECT
static struct delayed_work gtp_esd_check_work;
static struct workqueue_struct * gtp_esd_check_workqueue = NULL;
static void gtp_esd_check_func(struct work_struct *);
static s32 gtp_init_ext_watchdog(struct i2c_client *client);
void gtp_esd_switch(struct i2c_client *, s32);
#endif
//*********** For GT9XXF Start **********//
#if GTP_COMPATIBLE_MODE
extern s32 i2c_read_bytes(struct i2c_client *client, u16 addr, u8 *buf, s32 len);
extern s32 i2c_write_bytes(struct i2c_client *client, u16 addr, u8 *buf, s32 len);
extern s32 gup_clk_calibration(void);
extern s32 gup_fw_download_proc(void *dir, u8 dwn_mode);
extern u8 gup_check_fs_mounted(char *path_name);
void gtp_recovery_reset(struct i2c_client *client);
static s32 gtp_esd_recovery(struct i2c_client *client);
s32 gtp_fw_startup(struct i2c_client *client);
static s32 gtp_main_clk_proc(struct goodix_ts_data *ts);
static s32 gtp_bak_ref_proc(struct goodix_ts_data *ts, u8 mode);
#endif
//********** For GT9XXF End **********//
static struct regulator *tp_regulator = NULL;
static char ctp_power_name[] = CTP_POWER_ID;
static inline void regulator_deinit(struct regulator *);
static struct regulator *regulator_init(const char *, int, int);
#if GTP_GESTURE_WAKEUP
typedef enum
{
DOZE_DISABLED = 0,
DOZE_ENABLED = 1,
DOZE_WAKEUP = 2,
}DOZE_T;
static DOZE_T doze_status = DOZE_DISABLED;
static s8 gtp_enter_doze(struct goodix_ts_data *ts);
#endif
#ifdef GTP_CONFIG_OF
int gtp_parse_dt_cfg(struct device *dev, u8 *cfg, int *cfg_len, u8 sid);
#endif
/*******************************************************
Function:
Read data from the i2c slave device.
Input:
client: i2c device.
buf[0~1]: read start address.
buf[2~len-1]: read data buffer.
len: GTP_ADDR_LENGTH + read bytes count
Output:
numbers of i2c_msgs to transfer:
2: succeed, otherwise: failed
*********************************************************/
s32 gtp_i2c_read(struct i2c_client *client, u8 *buf, s32 len)
{
struct i2c_msg msgs[2];
s32 ret=-1;
s32 retries = 0;
GTP_DEBUG_FUNC();
msgs[0].flags = !I2C_M_RD;
msgs[0].addr = client->addr;
msgs[0].len = GTP_ADDR_LENGTH;
msgs[0].buf = &buf[0];
//msgs[0].scl_rate = 300 * 1000; // for Rockchip, etc.
msgs[1].flags = I2C_M_RD;
msgs[1].addr = client->addr;
msgs[1].len = len - GTP_ADDR_LENGTH;
msgs[1].buf = &buf[GTP_ADDR_LENGTH];
//msgs[1].scl_rate = 300 * 1000;
while(retries < 5)
{
ret = i2c_transfer(client->adapter, msgs, 2);
if(ret == 2)break;
retries++;
}
if((retries >= 5))
{
#if GTP_COMPATIBLE_MODE
struct goodix_ts_data *ts = i2c_get_clientdata(client);
#endif
#if GTP_GESTURE_WAKEUP
// reset chip would quit doze mode
if (DOZE_ENABLED == doze_status)
{
return ret;
}
#endif
GTP_ERROR("I2C Read: 0x%04X, %d bytes failed, errcode: %d! Process reset.", (((u16)(buf[0] << 8)) | buf[1]), len-2, ret);
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F == ts->chip_type)
{
gtp_recovery_reset(client);
}
else
#endif
{
gtp_reset_guitar(client, 10);
}
}
return ret;
}
/*******************************************************
Function:
Write data to the i2c slave device.
Input:
client: i2c device.
buf[0~1]: write start address.
buf[2~len-1]: data buffer
len: GTP_ADDR_LENGTH + write bytes count
Output:
numbers of i2c_msgs to transfer:
1: succeed, otherwise: failed
*********************************************************/
s32 gtp_i2c_write(struct i2c_client *client,u8 *buf,s32 len)
{
struct i2c_msg msg;
s32 ret = -1;
s32 retries = 0;
GTP_DEBUG_FUNC();
msg.flags = !I2C_M_RD;
msg.addr = client->addr;
msg.len = len;
msg.buf = buf;
//msg.scl_rate = 300 * 1000; // for Rockchip, etc
while(retries < 5)
{
ret = i2c_transfer(client->adapter, &msg, 1);
if (ret == 1)break;
retries++;
}
if((retries >= 5))
{
#if GTP_COMPATIBLE_MODE
struct goodix_ts_data *ts = i2c_get_clientdata(client);
#endif
#if GTP_GESTURE_WAKEUP
if (DOZE_ENABLED == doze_status)
{
return ret;
}
#endif
GTP_ERROR("I2C Write: 0x%04X, %d bytes failed, errcode: %d! Process reset.", (((u16)(buf[0] << 8)) | buf[1]), len-2, ret);
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F == ts->chip_type)
{
gtp_recovery_reset(client);
}
else
#endif
{
gtp_reset_guitar(client, 10);
}
}
return ret;
}
/*******************************************************
Function:
i2c read twice, compare the results
Input:
client: i2c device
addr: operate address
rxbuf: read data to store, if compare successful
len: bytes to read
Output:
FAIL: read failed
SUCCESS: read successful
*********************************************************/
s32 gtp_i2c_read_dbl_check(struct i2c_client *client, u16 addr, u8 *rxbuf, int len)
{
u8 buf[16] = {0};
u8 confirm_buf[16] = {0};
u8 retry = 0;
while (retry++ < 3)
{
memset(buf, 0xAA, 16);
buf[0] = (u8)(addr >> 8);
buf[1] = (u8)(addr & 0xFF);
gtp_i2c_read(client, buf, len + 2);
memset(confirm_buf, 0xAB, 16);
confirm_buf[0] = (u8)(addr >> 8);
confirm_buf[1] = (u8)(addr & 0xFF);
gtp_i2c_read(client, confirm_buf, len + 2);
if (!memcmp(buf, confirm_buf, len+2))
{
memcpy(rxbuf, confirm_buf+2, len);
return SUCCESS;
}
}
GTP_ERROR("I2C read 0x%04X, %d bytes, double check failed!", addr, len);
return FAIL;
}
/*******************************************************
Function:
Send config.
Input:
client: i2c device.
Output:
result of i2c write operation.
1: succeed, otherwise: failed
*********************************************************/
s32 gtp_send_cfg(struct i2c_client *client)
{
s32 ret = 2;
#if GTP_DRIVER_SEND_CFG
s32 retry = 0;
struct goodix_ts_data *ts = i2c_get_clientdata(client);
if (ts->pnl_init_error)
{
GTP_INFO("Error occured in init_panel, no config sent");
return 0;
}
GTP_INFO("Driver send config.");
for (retry = 0; retry < 5; retry++)
{
ret = gtp_i2c_write(client, config , GTP_CONFIG_MAX_LENGTH + GTP_ADDR_LENGTH);
if (ret > 0)
{
break;
}
}
#endif
return ret;
}
/*******************************************************
Function:
Disable irq function
Input:
ts: goodix i2c_client private data
Output:
None.
*********************************************************/
void gtp_irq_disable(struct goodix_ts_data *ts)
{
unsigned long irqflags;
GTP_DEBUG_FUNC();
spin_lock_irqsave(&ts->irq_lock, irqflags);
if (!ts->irq_is_disable)
{
ts->irq_is_disable = 1;
disable_irq_nosync(ts->client->irq);
}
spin_unlock_irqrestore(&ts->irq_lock, irqflags);
}
/*******************************************************
Function:
Enable irq function
Input:
ts: goodix i2c_client private data
Output:
None.
*********************************************************/
void gtp_irq_enable(struct goodix_ts_data *ts)
{
unsigned long irqflags = 0;
GTP_DEBUG_FUNC();
spin_lock_irqsave(&ts->irq_lock, irqflags);
if (ts->irq_is_disable)
{
enable_irq(ts->client->irq);
ts->irq_is_disable = 0;
}
spin_unlock_irqrestore(&ts->irq_lock, irqflags);
}
/*******************************************************
Function:
Report touch point event
Input:
ts: goodix i2c_client private data
id: trackId
x: input x coordinate
y: input y coordinate
w: input pressure
Output:
None.
*********************************************************/
static void gtp_touch_down(struct goodix_ts_data* ts,s32 id,s32 x,s32 y,s32 w)
{
#if GTP_CHANGE_X2Y
GTP_SWAP(x, y);
#endif
#if GTP_ICS_SLOT_REPORT
input_mt_slot(ts->input_dev, id);
input_report_abs(ts->input_dev, ABS_MT_TRACKING_ID, id);
input_report_abs(ts->input_dev, ABS_MT_POSITION_X, x);
input_report_abs(ts->input_dev, ABS_MT_POSITION_Y, y);
input_report_abs(ts->input_dev, ABS_MT_TOUCH_MAJOR, w);
input_report_abs(ts->input_dev, ABS_MT_WIDTH_MAJOR, w);
#else
input_report_key(ts->input_dev, BTN_TOUCH, 1);
input_report_abs(ts->input_dev, ABS_MT_POSITION_X, x);
input_report_abs(ts->input_dev, ABS_MT_POSITION_Y, y);
input_report_abs(ts->input_dev, ABS_MT_TOUCH_MAJOR, w);
input_report_abs(ts->input_dev, ABS_MT_WIDTH_MAJOR, w);
input_report_abs(ts->input_dev, ABS_MT_TRACKING_ID, id);
input_mt_sync(ts->input_dev);
#endif
GTP_DEBUG("ID:%d, X:%d, Y:%d, W:%d", id, x, y, w);
GTP_INFO("\n get xyw success ");
#if GTP_HAVE_TOUCH_KEY
#if GTP_DEBUG_ON
GTP_DEBUG(" X:%d,Y:%d", x, y);
GTP_INFO("get touch key event");
if ( y > 1024 ) {
if ( x < 40 && x > 0 ) {
if(VolumeDownkeydown==0){
input_event(ts->input_dev, EV_KEY,KEY_VOLUMEDOWN, 1);
VolumeDownkeydown=1;
GTP_INFO("VolumeDown key down\n");
}
} else if ( x < 150 && x > 85 ) {
if(VolumeUpkeydown==0){
input_event(ts->input_dev, EV_KEY,KEY_VOLUMEUP, 1);
VolumeUpkeydown=1;
GTP_INFO("VolumeUp key down\n");
}
} else if ( x < 340 && x > 308 ) {
if(Backkeydown==0){
input_event(ts->input_dev, EV_KEY,KEY_BACK, 1);
Backkeydown=1;
GTP_INFO("back key down\n");
}
}else if ( x < 450 && x > 405 ) {
if(Homekeydown==0){
input_event(ts->input_dev, EV_KEY,KEY_HOME, 1);
Homekeydown=1;
GTP_INFO("Home key down\n");
}
}else if ( x < 550 && x > 480 ) {
if(Menukeydown==0){
input_event(ts->input_dev, EV_KEY,KEY_MENU, 1);
Menukeydown=1;
GTP_INFO("menu key down\n");
}
}
}
#endif
#endif
}
/*******************************************************
Function:
Report touch release event
Input:
ts: goodix i2c_client private data
Output:
None.
*********************************************************/
static void gtp_touch_up(struct goodix_ts_data* ts, s32 id)
{
#if GTP_ICS_SLOT_REPORT
input_mt_slot(ts->input_dev, id);
input_report_abs(ts->input_dev, ABS_MT_TRACKING_ID, -1);
GTP_DEBUG("Touch id[%2d] release!", id);
#else
input_report_key(ts->input_dev, BTN_TOUCH, 0);
#endif
#if GTP_HAVE_TOUCH_KEY
#if GTP_DEBUG_ON
if(VolumeDownkeydown==1)
{
VolumeDownkeydown=0;
input_event(ts->input_dev, EV_KEY, KEY_VOLUMEDOWN, 0);
GTP_INFO("Volumedown key up\n");
}
if(VolumeUpkeydown==1)
{
VolumeUpkeydown=0;
input_event(ts->input_dev, EV_KEY, KEY_VOLUMEUP, 0);
GTP_INFO("Volumeup key up\n");
}
if(Backkeydown==1)
{
Backkeydown=0;
input_event(ts->input_dev, EV_KEY, KEY_BACK, 0);
GTP_INFO("back key up\n");
}
if(Homekeydown==1)
{
Homekeydown=0;
input_event(ts->input_dev, EV_KEY, KEY_HOME, 0);
GTP_INFO("home key up\n");
}
if(Menukeydown==1)
{
Menukeydown=0;
input_event(ts->input_dev, EV_KEY, KEY_MENU, 0);
GTP_INFO("MENU key up\n");
}
#endif
#endif
}
#if GTP_WITH_PEN
static void gtp_pen_init(struct goodix_ts_data *ts)
{
s32 ret = 0;
GTP_INFO("Request input device for pen/stylus.");
ts->pen_dev = input_allocate_device();
if (ts->pen_dev == NULL)
{
GTP_ERROR("Failed to allocate input device for pen/stylus.");
return;
}
ts->pen_dev->evbit[0] = BIT_MASK(EV_SYN) | BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS) ;
#if GTP_ICS_SLOT_REPORT
input_mt_init_slots(ts->pen_dev, 16,0); //
#else
ts->pen_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
#endif
set_bit(BTN_TOOL_PEN, ts->pen_dev->keybit);
set_bit(INPUT_PROP_DIRECT, ts->pen_dev->propbit);
//set_bit(INPUT_PROP_POINTER, ts->pen_dev->propbit);
#if GTP_PEN_HAVE_BUTTON
input_set_capability(ts->pen_dev, EV_KEY, BTN_STYLUS);
input_set_capability(ts->pen_dev, EV_KEY, BTN_STYLUS2);
#endif
input_set_abs_params(ts->pen_dev, ABS_MT_POSITION_X, 0, ts->abs_x_max, 0, 0);
input_set_abs_params(ts->pen_dev, ABS_MT_POSITION_Y, 0, ts->abs_y_max, 0, 0);
input_set_abs_params(ts->pen_dev, ABS_MT_PRESSURE, 0, 255, 0, 0);
input_set_abs_params(ts->pen_dev, ABS_MT_TOUCH_MAJOR, 0, 255, 0, 0);
input_set_abs_params(ts->pen_dev, ABS_MT_TRACKING_ID, 0, 255, 0, 0);
ts->pen_dev->name = "goodix-pen";
ts->pen_dev->id.bustype = BUS_I2C;
ret = input_register_device(ts->pen_dev);
if (ret)
{
GTP_ERROR("Register %s input device failed", ts->pen_dev->name);
return;
}
}
static void gtp_pen_down(s32 x, s32 y, s32 w, s32 id)
{
struct goodix_ts_data *ts = i2c_get_clientdata(i2c_connect_client);
#if GTP_CHANGE_X2Y
GTP_SWAP(x, y);
#endif
input_report_key(ts->pen_dev, BTN_TOOL_PEN, 1);
#if GTP_ICS_SLOT_REPORT
input_mt_slot(ts->pen_dev, id);
input_report_abs(ts->pen_dev, ABS_MT_TRACKING_ID, id);
input_report_abs(ts->pen_dev, ABS_MT_POSITION_X, x);
input_report_abs(ts->pen_dev, ABS_MT_POSITION_Y, y);
input_report_abs(ts->pen_dev, ABS_MT_PRESSURE, w);
input_report_abs(ts->pen_dev, ABS_MT_TOUCH_MAJOR, w);
#else
input_report_key(ts->pen_dev, BTN_TOUCH, 1);
input_report_abs(ts->pen_dev, ABS_MT_POSITION_X, x);
input_report_abs(ts->pen_dev, ABS_MT_POSITION_Y, y);
input_report_abs(ts->pen_dev, ABS_MT_PRESSURE, w);
input_report_abs(ts->pen_dev, ABS_MT_TOUCH_MAJOR, w);
input_report_abs(ts->pen_dev, ABS_MT_TRACKING_ID, id);
input_mt_sync(ts->pen_dev);
#endif
GTP_DEBUG("(%d)(%d, %d)[%d]", id, x, y, w);
GTP_INFO("get x success");
}
static void gtp_pen_up(s32 id)
{
struct goodix_ts_data *ts = i2c_get_clientdata(i2c_connect_client);
input_report_key(ts->pen_dev, BTN_TOOL_PEN, 0);
#if GTP_ICS_SLOT_REPORT
input_mt_slot(ts->pen_dev, id);
input_report_abs(ts->pen_dev, ABS_MT_TRACKING_ID, -1);
#else
input_report_key(ts->pen_dev, BTN_TOUCH, 0);
#endif
}
#endif
/*******************************************************
Function:
Goodix touchscreen work function
Input:
work: work struct of goodix_workqueue
Output:
None.
*********************************************************/
static void goodix_ts_work_func(struct work_struct *work)
{
u8 end_cmd[3] = {GTP_READ_COOR_ADDR >> 8, GTP_READ_COOR_ADDR & 0xFF, 0};
u8 point_data[2 + 1 + 8 * GTP_MAX_TOUCH + 1]={GTP_READ_COOR_ADDR >> 8, GTP_READ_COOR_ADDR & 0xFF};
u8 touch_num = 0;
u8 finger = 0;
static u16 pre_touch = 0;
static u8 pre_key = 0;
#if GTP_WITH_PEN
u8 pen_active = 0;
static u8 pre_pen = 0;
#endif
u8 key_value = 0;
u8* coor_data = NULL;
s32 input_x = 0;
s32 input_y = 0;
s32 input_w = 0;
s32 id = 0;
s32 i = 0;
s32 ret = -1;
struct goodix_ts_data *ts = NULL;
#if GTP_COMPATIBLE_MODE
u8 rqst_buf[3] = {0x80, 0x43}; // for GT9XXF
#endif
#if GTP_GESTURE_WAKEUP
u8 doze_buf[3] = {0x81, 0x4B};
#endif
GTP_DEBUG_FUNC();
ts = container_of(work, struct goodix_ts_data, work);
if (ts->enter_update)
{
return;
}
#if GTP_GESTURE_WAKEUP
if (DOZE_ENABLED == doze_status)
{
ret = gtp_i2c_read(i2c_connect_client, doze_buf, 3);
GTP_DEBUG("0x814B = 0x%02X", doze_buf[2]);
if (ret > 0)
{
if ((doze_buf[2] == 'a') || (doze_buf[2] == 'b') || (doze_buf[2] == 'c') ||
(doze_buf[2] == 'd') || (doze_buf[2] == 'e') || (doze_buf[2] == 'g') ||
(doze_buf[2] == 'h') || (doze_buf[2] == 'm') || (doze_buf[2] == 'o') ||
(doze_buf[2] == 'q') || (doze_buf[2] == 's') || (doze_buf[2] == 'v') ||
(doze_buf[2] == 'w') || (doze_buf[2] == 'y') || (doze_buf[2] == 'z') ||
(doze_buf[2] == 0x5E) /* ^ */
)
{
if (doze_buf[2] != 0x5E)
{
GTP_INFO("Wakeup by gesture(%c), light up the screen!", doze_buf[2]);
}
else
{
GTP_INFO("Wakeup by gesture(^), light up the screen!");
}
doze_status = DOZE_WAKEUP;
input_report_key(ts->input_dev, KEY_POWER, 1);
input_sync(ts->input_dev);
input_report_key(ts->input_dev, KEY_POWER, 0);
input_sync(ts->input_dev);
// clear 0x814B
doze_buf[2] = 0x00;
gtp_i2c_write(i2c_connect_client, doze_buf, 3);
}
else if ( (doze_buf[2] == 0xAA) || (doze_buf[2] == 0xBB) ||
(doze_buf[2] == 0xAB) || (doze_buf[2] == 0xBA) )
{
char *direction[4] = {"Right", "Down", "Up", "Left"};
u8 type = ((doze_buf[2] & 0x0F) - 0x0A) + (((doze_buf[2] >> 4) & 0x0F) - 0x0A) * 2;
GTP_INFO("%s slide to light up the screen!", direction[type]);
doze_status = DOZE_WAKEUP;
input_report_key(ts->input_dev, KEY_POWER, 1);
input_sync(ts->input_dev);
input_report_key(ts->input_dev, KEY_POWER, 0);
input_sync(ts->input_dev);
// clear 0x814B
doze_buf[2] = 0x00;
gtp_i2c_write(i2c_connect_client, doze_buf, 3);
}
else if (0xCC == doze_buf[2])
{
GTP_INFO("Double click to light up the screen!");
doze_status = DOZE_WAKEUP;
input_report_key(ts->input_dev, KEY_POWER, 1);
input_sync(ts->input_dev);
input_report_key(ts->input_dev, KEY_POWER, 0);
input_sync(ts->input_dev);
// clear 0x814B
doze_buf[2] = 0x00;
gtp_i2c_write(i2c_connect_client, doze_buf, 3);
}
else
{
// clear 0x814B
doze_buf[2] = 0x00;
gtp_i2c_write(i2c_connect_client, doze_buf, 3);
gtp_enter_doze(ts);
}
}
if (ts->use_irq)
{
gtp_irq_enable(ts);
}
return;
}
#endif
ret = gtp_i2c_read(ts->client, point_data, 12);
if (ret < 0)
{
GTP_ERROR("I2C transfer error. errno:%d\n ", ret);
if (ts->use_irq)
{
gtp_irq_enable(ts);
}
return;
}
finger = point_data[GTP_ADDR_LENGTH];
#if GTP_COMPATIBLE_MODE
// GT9XXF reques event
if ((finger == 0x00) && (CHIP_TYPE_GT9F == ts->chip_type)) // request arrived
{
ret = gtp_i2c_read(ts->client, rqst_buf, 3);
if (ret < 0)
{
GTP_ERROR("Read request status error!");
goto exit_work_func;
}
switch (rqst_buf[2])
{
case GTP_RQST_CONFIG:
GTP_INFO("Request for config.");
ret = gtp_send_cfg(ts->client);
if (ret < 0)
{
GTP_ERROR("Request for config unresponded!");
}
else
{
rqst_buf[2] = GTP_RQST_RESPONDED;
gtp_i2c_write(ts->client, rqst_buf, 3);
GTP_INFO("Request for config responded!");
}
break;
case GTP_RQST_BAK_REF:
GTP_INFO("Request for backup reference.");
ts->rqst_processing = 1;
ret = gtp_bak_ref_proc(ts, GTP_BAK_REF_SEND);
if (SUCCESS == ret)
{
rqst_buf[2] = GTP_RQST_RESPONDED;
gtp_i2c_write(ts->client, rqst_buf, 3);
ts->rqst_processing = 0;
GTP_INFO("Request for backup reference responded!");
}
else
{
GTP_ERROR("Requeset for backup reference unresponed!");
}
break;
case GTP_RQST_RESET:
GTP_INFO("Request for reset.");
gtp_recovery_reset(ts->client);
break;
case GTP_RQST_MAIN_CLOCK:
GTP_INFO("Request for main clock.");
ts->rqst_processing = 1;
ret = gtp_main_clk_proc(ts);
if (FAIL == ret)
{
GTP_ERROR("Request for main clock unresponded!");
}
else
{
GTP_INFO("Request for main clock responded!");
rqst_buf[2] = GTP_RQST_RESPONDED;
gtp_i2c_write(ts->client, rqst_buf, 3);
ts->rqst_processing = 0;
ts->clk_chk_fs_times = 0;
}
break;
default:
GTP_INFO("Undefined request: 0x%02X", rqst_buf[2]);
rqst_buf[2] = GTP_RQST_RESPONDED;
gtp_i2c_write(ts->client, rqst_buf, 3);
break;
}
}
#endif
if (finger == 0x00)
{
if (ts->use_irq)
{
gtp_irq_enable(ts);
}
return;
}
if((finger & 0x80) == 0)
{
goto exit_work_func;
}
touch_num = finger & 0x0f;
if (touch_num > GTP_MAX_TOUCH)
{
goto exit_work_func;
}
if (touch_num > 1)
{
u8 buf[8 * GTP_MAX_TOUCH] = {(GTP_READ_COOR_ADDR + 10) >> 8, (GTP_READ_COOR_ADDR + 10) & 0xff};
ret = gtp_i2c_read(ts->client, buf, 2 + 8 * (touch_num - 1));
memcpy(&point_data[12], &buf[2], 8 * (touch_num - 1));
}
#if (GTP_HAVE_TOUCH_KEY || GTP_PEN_HAVE_BUTTON)
key_value = point_data[3 + 8 * touch_num];
if(key_value || pre_key)
{
#if GTP_PEN_HAVE_BUTTON
if (key_value == 0x40)
{
GTP_DEBUG("BTN_STYLUS & BTN_STYLUS2 Down.");
input_report_key(ts->pen_dev, BTN_STYLUS, 1);
input_report_key(ts->pen_dev, BTN_STYLUS2, 1);
pen_active = 1;
}
else if (key_value == 0x10)
{
GTP_DEBUG("BTN_STYLUS Down, BTN_STYLUS2 Up.");
input_report_key(ts->pen_dev, BTN_STYLUS, 1);
input_report_key(ts->pen_dev, BTN_STYLUS2, 0);
pen_active = 1;
}
else if (key_value == 0x20)
{
GTP_DEBUG("BTN_STYLUS Up, BTN_STYLUS2 Down.");
input_report_key(ts->pen_dev, BTN_STYLUS, 0);
input_report_key(ts->pen_dev, BTN_STYLUS2, 1);
pen_active = 1;
}
else
{
GTP_DEBUG("BTN_STYLUS & BTN_STYLUS2 Up.");
input_report_key(ts->pen_dev, BTN_STYLUS, 0);
input_report_key(ts->pen_dev, BTN_STYLUS2, 0);
if ( (pre_key == 0x40) || (pre_key == 0x20) ||
(pre_key == 0x10)
)
{
pen_active = 1;
}
}
if (pen_active)
{
touch_num = 0; // shield pen point
//pre_touch = 0; // clear last pen status
}
#endif
#if GTP_HAVE_TOUCH_KEY
if (!pre_touch)
{
for (i = 0; i < GTP_MAX_KEY_NUM; i++)
{
#if GTP_DEBUG_ON
for (ret = 0; ret < 5; ++ret)
{
if (key_codes[ret] == touch_key_array)
{
GTP_DEBUG("Key: %s %s", key_names[ret], (key_value & (0x01 << i)) ? "Down" : "Up");
break;
}
}
#endif
input_report_key(ts->input_dev, touch_key_array, key_value & (0x01<<i));
}
touch_num = 0; // shield fingers
}
#endif
}
#endif
pre_key = key_value;
//GTP_DEBUG("pre_touch:%02x, finger:%02x.", pre_touch, finger);
#if GTP_ICS_SLOT_REPORT
#if GTP_WITH_PEN
if (pre_pen && (touch_num == 0))
{
GTP_DEBUG("Pen touch UP(Slot)!");
gtp_pen_up(0);
pen_active = 1;
pre_pen = 0;
}
#endif
if (pre_touch || touch_num)
{
s32 pos = 0;
u16 touch_index = 0;
u8 report_num = 0;
coor_data = &point_data[3];
if(touch_num)
{
id = coor_data[pos] & 0x0F;
#if GTP_WITH_PEN
id = coor_data[pos];
if ((id & 0x80))
{
GTP_DEBUG("Pen touch DOWN(Slot)!");
input_x = coor_data[pos + 1] | (coor_data[pos + 2] << 8);
input_y = coor_data[pos + 3] | (coor_data[pos + 4] << 8);
input_w = coor_data[pos + 5] | (coor_data[pos + 6] << 8);
gtp_pen_down(input_x, input_y, input_w, 0);
pre_pen = 1;
pre_touch = 0;
pen_active = 1;
}
#endif
touch_index |= (0x01<<id);
}
GTP_DEBUG("id = %d,touch_index = 0x%x, pre_touch = 0x%x\n",id, touch_index,pre_touch);
for (i = 0; i < GTP_MAX_TOUCH; i++)
{
#if GTP_WITH_PEN
if (pre_pen == 1)
{
break;
}
#endif
if ((touch_index & (0x01<<i)))
{
input_x = coor_data[pos + 1] | (coor_data[pos + 2] << 8);
input_y = coor_data[pos + 3] | (coor_data[pos + 4] << 8);
input_w = coor_data[pos + 5] | (coor_data[pos + 6] << 8);
gtp_touch_down(ts, id, input_x, input_y, input_w);
pre_touch |= 0x01 << i;
report_num++;
if (report_num < touch_num)
{
pos += 8;
id = coor_data[pos] & 0x0F;
touch_index |= (0x01<<id);
}
}
else
{
gtp_touch_up(ts, i);
pre_touch &= ~(0x01 << i);
}
}
}
#else
if (touch_num)
{
for (i = 0; i < touch_num; i++)
{
coor_data = &point_data[i * 8 + 3];
id = coor_data[0] & 0x0F;
input_x = coor_data[1] | (coor_data[2] << 8);
input_y = coor_data[3] | (coor_data[4] << 8);
input_w = coor_data[5] | (coor_data[6] << 8);
#if GTP_WITH_PEN
id = coor_data[0];
if (id & 0x80)
{
GTP_DEBUG("Pen touch DOWN!");
gtp_pen_down(input_x, input_y, input_w, 0);
pre_pen = 1;
pen_active = 1;
break;
}
else
#endif
{
gtp_touch_down(ts, id, input_x, input_y, input_w);
}
}
}
else if (pre_touch)
{
#if GTP_WITH_PEN
if (pre_pen == 1)
{
GTP_DEBUG("Pen touch UP!");
gtp_pen_up(0);
pre_pen = 0;
pen_active = 1;
}
else
#endif
{
GTP_DEBUG("Touch Release!");
gtp_touch_up(ts, 0);
}
}
pre_touch = touch_num;
#endif
#if GTP_WITH_PEN
if (pen_active)
{
pen_active = 0;
input_sync(ts->pen_dev);
}
else
#endif
{
input_sync(ts->input_dev);
}
exit_work_func:
if(!ts->gtp_rawdiff_mode)
{
ret = gtp_i2c_write(ts->client, end_cmd, 3);
if (ret < 0)
{
GTP_INFO("I2C write end_cmd error!");
}
}
if (ts->use_irq)
{
gtp_irq_enable(ts);
}
}
/*******************************************************
Function:
Timer interrupt service routine for polling mode.
Input:
timer: timer struct pointer
Output:
Timer work mode.
HRTIMER_NORESTART: no restart mode
*********************************************************/
static enum hrtimer_restart goodix_ts_timer_handler(struct hrtimer *timer)
{
struct goodix_ts_data *ts = container_of(timer, struct goodix_ts_data, timer);
GTP_DEBUG_FUNC();
queue_work(goodix_wq, &ts->work);
hrtimer_start(&ts->timer, ktime_set(0, (GTP_POLL_TIME+6)*1000000), HRTIMER_MODE_REL);
return HRTIMER_NORESTART;
}
/*******************************************************
Function:
External interrupt service routine for interrupt mode.
Input:
irq: interrupt number.
dev_id: private data pointer
Output:
Handle Result.
IRQ_HANDLED: interrupt handled successfully
*********************************************************/
static irqreturn_t goodix_ts_irq_handler(int irq, void *dev_id)
{
struct goodix_ts_data *ts = dev_id;
GTP_DEBUG_FUNC();
gtp_irq_disable(ts);
queue_work(goodix_wq, &ts->work);
return IRQ_HANDLED;
}
/*******************************************************
Function:
Synchronization.
Input:
ms: synchronization time in millisecond.
Output:
None.
*******************************************************/
void gtp_int_sync(s32 ms)
{
GTP_GPIO_OUTPUT(gtp_int_gpio, 0);
msleep(ms);
GTP_GPIO_AS_INT(gtp_int_gpio);
}
/*******************************************************
Function:
Reset chip.
Input:
ms: reset time in millisecond
Output:
None.
*******************************************************/
void gtp_reset_guitar(struct i2c_client *client, s32 ms)
{
#if GTP_COMPATIBLE_MODE
struct goodix_ts_data *ts = i2c_get_clientdata(client);
#endif
GTP_DEBUG_FUNC();
GTP_INFO("Guitar reset");
GTP_GPIO_OUTPUT(gtp_rst_gpio, 0); // begin select I2C slave addr
msleep(ms); // T2: > 10ms
// HIGH: 0x28/0x29, LOW: 0xBA/0xBB
GTP_GPIO_OUTPUT(gtp_int_gpio, client->addr == 0x14);
msleep(2); // T3: > 100us
GTP_GPIO_OUTPUT(gtp_rst_gpio, 1);
msleep(6); // T4: > 5ms
GTP_GPIO_AS_INPUT(gtp_rst_gpio); // end select I2C slave addr
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F == ts->chip_type)
{
return;
}
#endif
gtp_int_sync(50);
#if GTP_ESD_PROTECT
gtp_init_ext_watchdog(client);
#endif
}
#if GTP_GESTURE_WAKEUP
/*******************************************************
Function:
Enter doze mode for sliding wakeup.
Input:
ts: goodix tp private data
Output:
1: succeed, otherwise failed
*******************************************************/
static s8 gtp_enter_doze(struct goodix_ts_data *ts)
{
s8 ret = -1;
s8 retry = 0;
u8 i2c_control_buf[3] = {(u8)(GTP_REG_SLEEP >> 8), (u8)GTP_REG_SLEEP, 8};
GTP_DEBUG_FUNC();
GTP_DEBUG("Entering gesture mode.");
while(retry++ < 5)
{
i2c_control_buf[0] = 0x80;
i2c_control_buf[1] = 0x46;
ret = gtp_i2c_write(ts->client, i2c_control_buf, 3);
if (ret < 0)
{
GTP_DEBUG("failed to set doze flag into 0x8046, %d", retry);
continue;
}
i2c_control_buf[0] = 0x80;
i2c_control_buf[1] = 0x40;
ret = gtp_i2c_write(ts->client, i2c_control_buf, 3);
if (ret > 0)
{
doze_status = DOZE_ENABLED;
GTP_INFO("Gesture mode enabled.");
return ret;
}
msleep(10);
}
GTP_ERROR("GTP send gesture cmd failed.");
return ret;
}
#else
/*******************************************************
Function:
Enter sleep mode.
Input:
ts: private data.
Output:
Executive outcomes.
1: succeed, otherwise failed.
*******************************************************/
static s8 gtp_enter_sleep(struct goodix_ts_data * ts)
{
s8 ret = -1;
s8 retry = 0;
u8 i2c_control_buf[3] = {(u8)(GTP_REG_SLEEP >> 8), (u8)GTP_REG_SLEEP, 5};
#if GTP_COMPATIBLE_MODE
u8 status_buf[3] = {0x80, 0x44};
#endif
GTP_DEBUG_FUNC();
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F == ts->chip_type)
{
// GT9XXF: host interact with ic
ret = gtp_i2c_read(ts->client, status_buf, 3);
if (ret < 0)
{
GTP_ERROR("failed to get backup-reference status");
}
if (status_buf[2] & 0x80)
{
ret = gtp_bak_ref_proc(ts, GTP_BAK_REF_STORE);
if (FAIL == ret)
{
GTP_ERROR("failed to store bak_ref");
}
}
}
#endif
GTP_GPIO_OUTPUT(gtp_int_gpio, 0);
msleep(5);
while(retry++ < 5)
{
ret = gtp_i2c_write(ts->client, i2c_control_buf, 3);
if (ret > 0)
{
GTP_INFO("GTP enter sleep!");
return ret;
}
msleep(10);
}
GTP_ERROR("GTP send sleep cmd failed.");
return ret;
}
#endif
/*******************************************************
Function:
Wakeup from sleep.
Input:
ts: private data.
Output:
Executive outcomes.
>0: succeed, otherwise: failed.
*******************************************************/
static s8 gtp_wakeup_sleep(struct goodix_ts_data * ts)
{
u8 retry = 0;
s8 ret = -1;
GTP_DEBUG_FUNC();
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F == ts->chip_type)
{
u8 opr_buf[3] = {0x41, 0x80};
GTP_GPIO_OUTPUT(gtp_int_gpio, 1);
msleep(5);
for (retry = 0; retry < 10; ++retry)
{
// hold ss51 & dsp
opr_buf[2] = 0x0C;
ret = gtp_i2c_write(ts->client, opr_buf, 3);
if (FAIL == ret)
{
GTP_ERROR("failed to hold ss51 & dsp!");
continue;
}
opr_buf[2] = 0x00;
ret = gtp_i2c_read(ts->client, opr_buf, 3);
if (FAIL == ret)
{
GTP_ERROR("failed to get ss51 & dsp status!");
continue;
}
if (0x0C != opr_buf[2])
{
GTP_DEBUG("ss51 & dsp not been hold, %d", retry+1);
continue;
}
GTP_DEBUG("ss51 & dsp confirmed hold");
ret = gtp_fw_startup(ts->client);
if (FAIL == ret)
{
GTP_ERROR("failed to startup GT9XXF, process recovery");
gtp_esd_recovery(ts->client);
}
break;
}
if (retry >= 10)
{
GTP_ERROR("failed to wakeup, processing esd recovery");
gtp_esd_recovery(ts->client);
}
else
{
GTP_INFO("GT9XXF gtp wakeup success");
}
return ret;
}
#endif
#if GTP_POWER_CTRL_SLEEP
while(retry++ < 5)
{
gtp_reset_guitar(ts->client, 20);
GTP_INFO("GTP wakeup sleep.");
return 1;
}
#else
while(retry++ < 10)
{
#if GTP_GESTURE_WAKEUP
if (DOZE_WAKEUP != doze_status)
{
GTP_INFO("Powerkey wakeup.");
}
else
{
GTP_INFO("Gesture wakeup.");
}
doze_status = DOZE_DISABLED;
gtp_irq_disable(ts);
gtp_reset_guitar(ts->client, 10);
gtp_irq_enable(ts);
#else
GTP_GPIO_OUTPUT(gtp_int_gpio, 1);
msleep(5);
#endif
ret = gtp_i2c_test(ts->client);
if (ret > 0)
{
GTP_INFO("GTP wakeup sleep.");
#if (!GTP_GESTURE_WAKEUP)
{
gtp_int_sync(25);
#if GTP_ESD_PROTECT
gtp_init_ext_watchdog(ts->client);
#endif
}
#endif
return ret;
}
gtp_reset_guitar(ts->client, 20);
}
#endif
GTP_ERROR("GTP wakeup sleep failed.");
return ret;
}
/*******************************************************
Function:
Initialize gtp.
Input:
ts: goodix private data
Output:
Executive outcomes.
0: succeed, otherwise: failed
*******************************************************/
static s32 gtp_init_panel(struct goodix_ts_data *ts)
{
s32 ret = -1;
#if GTP_DRIVER_SEND_CFG
s32 i = 0;
u8 check_sum = 0;
u8 opr_buf[16] = {0};
u8 sensor_id = 0;
u8 drv_cfg_version;
u8 flash_cfg_version;
/* if defined CONFIG_OF, parse config data from dtsi
* else parse config data form header file.
*/
#ifndef GTP_CONFIG_OF
u8 cfg_info_group0[] = CTP_CFG_GROUP0;
u8 cfg_info_group1[] = CTP_CFG_GROUP1;
u8 cfg_info_group2[] = CTP_CFG_GROUP2;
u8 cfg_info_group3[] = CTP_CFG_GROUP3;
u8 cfg_info_group4[] = CTP_CFG_GROUP4;
u8 cfg_info_group5[] = CTP_CFG_GROUP5;
u8 *send_cfg_buf[] = {cfg_info_group0,cfg_info_group1,
cfg_info_group2, cfg_info_group3,
cfg_info_group4, cfg_info_group5};
u8 cfg_info_len[] = { CFG_GROUP_LEN(cfg_info_group0),
CFG_GROUP_LEN(cfg_info_group1),
CFG_GROUP_LEN(cfg_info_group2),
CFG_GROUP_LEN(cfg_info_group3),
CFG_GROUP_LEN(cfg_info_group4),
CFG_GROUP_LEN(cfg_info_group5)};
GTP_DEBUG("Config Groups\' Lengths: %d, %d, %d, %d, %d, %d",
cfg_info_len[0], cfg_info_len[1], cfg_info_len[2], cfg_info_len[3],
cfg_info_len[4], cfg_info_len[5]);
#endif
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F == ts->chip_type) {
ts->fw_error = 0;
}
else
#endif
{ /* check firmware */
ret = gtp_i2c_read_dbl_check(ts->client, 0x41E4, opr_buf, 1);
if (SUCCESS == ret)
{
if (opr_buf[0] != 0xBE)
{
ts->fw_error = 1;
GTP_ERROR("Firmware error, no config sent!");
return -1;
}
}
}
/* read sensor id */
#if GTP_COMPATIBLE_MODE
msleep(50);
#endif
ret = gtp_i2c_read_dbl_check(ts->client, GTP_REG_SENSOR_ID, &sensor_id, 1);
if (SUCCESS == ret)
{
if (sensor_id >= 0x06)
{
GTP_ERROR("Invalid sensor_id(0x%02X), No Config Sent!", sensor_id);
ts->pnl_init_error = 1;
return -1;
}
}
else
{
GTP_ERROR("Failed to get sensor_id, No config sent!");
ts->pnl_init_error = 1;
return -1;
}
GTP_INFO("Sensor_ID: %d", sensor_id);
/* parse config data*/
#ifdef GTP_CONFIG_OF
GTP_DEBUG("Get config data from device tree.");
ret = gtp_parse_dt_cfg(&ts->client->dev, &config[GTP_ADDR_LENGTH], &ts->gtp_cfg_len, sensor_id);
if (ret < 0) {
GTP_ERROR("Failed to parse config data form device tree.");
ts->pnl_init_error = 1;
return -1;
}
#else
GTP_DEBUG("Get config data from header file.");
if ((!cfg_info_len[1]) && (!cfg_info_len[2]) &&
(!cfg_info_len[3]) && (!cfg_info_len[4]) &&
(!cfg_info_len[5]))
{
sensor_id = 0;
}
ts->gtp_cfg_len = cfg_info_len[sensor_id];
memset(&config[GTP_ADDR_LENGTH], 0, GTP_CONFIG_MAX_LENGTH);
memcpy(&config[GTP_ADDR_LENGTH], send_cfg_buf[sensor_id], ts->gtp_cfg_len);
#endif
GTP_INFO("Config group%d used,length: %d", sensor_id, ts->gtp_cfg_len);
if (ts->gtp_cfg_len < GTP_CONFIG_MIN_LENGTH)
{
GTP_ERROR("Config Group%d is INVALID CONFIG GROUP(Len: %d)! NO Config Sent! You need to check you header file CFG_GROUP section!", sensor_id, ts->gtp_cfg_len);
ts->pnl_init_error = 1;
return -1;
}
#if GTP_COMPATIBLE_MODE
if (ts->chip_type != CHIP_TYPE_GT9F)
#endif
{
ret = gtp_i2c_read_dbl_check(ts->client, GTP_REG_CONFIG_DATA, &opr_buf[0], 1);
if (ret == SUCCESS) {
GTP_DEBUG("Config Version: %d, 0x%02X; IC Config Version: %d, 0x%02X",
config[GTP_ADDR_LENGTH], config[GTP_ADDR_LENGTH], opr_buf[0], opr_buf[0]);
flash_cfg_version = opr_buf[0];
drv_cfg_version = config[GTP_ADDR_LENGTH];
if (flash_cfg_version < 90 && flash_cfg_version > drv_cfg_version) {
config[GTP_ADDR_LENGTH] = 0x00;
}
} else {
GTP_ERROR("Failed to get ic config version!No config sent!");
return -1;
}
}
#if GTP_CUSTOM_CFG
config[RESOLUTION_LOC] = (u8)GTP_MAX_WIDTH;
config[RESOLUTION_LOC + 1] = (u8)(GTP_MAX_WIDTH>>8);
config[RESOLUTION_LOC + 2] = (u8)GTP_MAX_HEIGHT;
config[RESOLUTION_LOC + 3] = (u8)(GTP_MAX_HEIGHT>>8);
if (GTP_INT_TRIGGER == 0) //RISING
{
config[TRIGGER_LOC] &= 0xfe;
}
else if (GTP_INT_TRIGGER == 1) //FALLING
{
config[TRIGGER_LOC] |= 0x01;
}
#endif // GTP_CUSTOM_CFG
check_sum = 0;
for (i = GTP_ADDR_LENGTH; i < ts->gtp_cfg_len; i++)
{
check_sum += config;
}
config[ts->gtp_cfg_len] = (~check_sum) + 1;
#else // driver not send config
ts->gtp_cfg_len = GTP_CONFIG_MAX_LENGTH;
ret = gtp_i2c_read(ts->client, config, ts->gtp_cfg_len + GTP_ADDR_LENGTH);
if (ret < 0)
{
GTP_ERROR("Read Config Failed, Using Default Resolution & INT Trigger!");
ts->abs_x_max = GTP_MAX_WIDTH;
ts->abs_y_max = GTP_MAX_HEIGHT;
ts->int_trigger_type = GTP_INT_TRIGGER;
}
#endif // GTP_DRIVER_SEND_CFG
if ((ts->abs_x_max == 0) && (ts->abs_y_max == 0))
{
ts->abs_x_max = (config[RESOLUTION_LOC + 1] << 8) + config[RESOLUTION_LOC];
ts->abs_y_max = (config[RESOLUTION_LOC + 3] << 8) + config[RESOLUTION_LOC + 2];
ts->int_trigger_type = (config[TRIGGER_LOC]) & 0x03;
}
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F == ts->chip_type)
{
u8 sensor_num = 0;
u8 driver_num = 0;
u8 have_key = 0;
have_key = (config[GTP_REG_HAVE_KEY - GTP_REG_CONFIG_DATA + 2] & 0x01);
if (1 == ts->is_950)
{
driver_num = config[GTP_REG_MATRIX_DRVNUM - GTP_REG_CONFIG_DATA + 2];
sensor_num = config[GTP_REG_MATRIX_SENNUM - GTP_REG_CONFIG_DATA + 2];
if (have_key)
{
driver_num--;
}
ts->bak_ref_len = (driver_num * (sensor_num - 1) + 2) * 2 * 6;
}
else
{
driver_num = (config[CFG_LOC_DRVA_NUM] & 0x1F) + (config[CFG_LOC_DRVB_NUM]&0x1F);
if (have_key)
{
driver_num--;
}
sensor_num = (config[CFG_LOC_SENS_NUM] & 0x0F) + ((config[CFG_LOC_SENS_NUM] >> 4) & 0x0F);
ts->bak_ref_len = (driver_num * (sensor_num - 2) + 2) * 2;
}
GTP_INFO("Drv * Sen: %d * %d(key: %d), X_MAX: %d, Y_MAX: %d, TRIGGER: 0x%02x",
driver_num, sensor_num, have_key, ts->abs_x_max,ts->abs_y_max,ts->int_trigger_type);
return 0;
}
else
#endif
{
#if GTP_DRIVER_SEND_CFG
ret = gtp_send_cfg(ts->client);
if (ret < 0)
{
GTP_ERROR("Send config error.");
}
#if GTP_COMPATIBLE_MODE
if (ts->chip_type != CHIP_TYPE_GT9F)
#endif
{
if (flash_cfg_version < 90 && flash_cfg_version > drv_cfg_version) {
check_sum = 0;
config[GTP_ADDR_LENGTH] = drv_cfg_version;
for (i = GTP_ADDR_LENGTH; i < ts->gtp_cfg_len; i++) {
check_sum += config;
}
config[ts->gtp_cfg_len] = (~check_sum) + 1;
}
}
#endif
GTP_INFO("X_MAX: %d, Y_MAX: %d, TRIGGER: 0x%02x", ts->abs_x_max,ts->abs_y_max,ts->int_trigger_type);
}
msleep(10);
return 0;
}
static ssize_t gt91xx_config_read_proc(struct file *file, char __user *page, size_t size, loff_t *ppos)
{
char *ptr = page;
char temp_data[GTP_CONFIG_MAX_LENGTH + 2] = {0x80, 0x47};
int i;
if (*ppos)
{
return 0;
}
ptr += sprintf(ptr, "==== GT9XX config init value====\n");
for (i = 0 ; i < GTP_CONFIG_MAX_LENGTH ; i++)
{
ptr += sprintf(ptr, "0x%02X ", config[i + 2]);
if (i % 8 == 7)
ptr += sprintf(ptr, "\n");
}
ptr += sprintf(ptr, "\n");
ptr += sprintf(ptr, "==== GT9XX config real value====\n");
gtp_i2c_read(i2c_connect_client, temp_data, GTP_CONFIG_MAX_LENGTH + 2);
for (i = 0 ; i < GTP_CONFIG_MAX_LENGTH ; i++)
{
ptr += sprintf(ptr, "0x%02X ", temp_data[i+2]);
if (i % 8 == 7)
ptr += sprintf(ptr, "\n");
}
*ppos += ptr - page;
return (ptr - page);
}
static ssize_t gt91xx_config_write_proc(struct file *filp, const char __user *buffer, size_t count, loff_t *off)
{
s32 ret = 0;
GTP_DEBUG("write count %d\n", count);
if (count > GTP_CONFIG_MAX_LENGTH)
{
GTP_ERROR("size not match [%d:%d]\n", GTP_CONFIG_MAX_LENGTH, count);
return -EFAULT;
}
if (copy_from_user(&config[2], buffer, count))
{
GTP_ERROR("copy from user fail\n");
return -EFAULT;
}
ret = gtp_send_cfg(i2c_connect_client);
if (ret < 0)
{
GTP_ERROR("send config failed.");
}
return count;
}
/*******************************************************
Function:
Read chip version.
Input:
client: i2c device
version: buffer to keep ic firmware version
Output:
read operation return.
2: succeed, otherwise: failed
*******************************************************/
s32 gtp_read_version(struct i2c_client *client, u16* version)
{
s32 ret = -1;
u8 buf[8] = {GTP_REG_VERSION >> 8, GTP_REG_VERSION & 0xff};
GTP_DEBUG_FUNC();
ret = gtp_i2c_read(client, buf, sizeof(buf));
if (ret < 0)
{
GTP_ERROR("GTP read version failed");
return ret;
}
if (version)
{
*version = (buf[7] << 8) | buf[6];
}
if (buf[5] == 0x00)
{
GTP_INFO("IC Version: %c%c%c_%02x%02x", buf[2], buf[3], buf[4], buf[7], buf[6]);
}
else
{
GTP_INFO("IC Version: %c%c%c%c_%02x%02x", buf[2], buf[3], buf[4], buf[5], buf[7], buf[6]);
}
return ret;
}
/*******************************************************
Function:
I2c test Function.
Input:
client:i2c client.
Output:
Executive outcomes.
2: succeed, otherwise failed.
*******************************************************/
static s8 gtp_i2c_test(struct i2c_client *client)
{
u8 test[3] = {GTP_REG_CONFIG_DATA >> 8, GTP_REG_CONFIG_DATA & 0xff};
u8 retry = 0;
s8 ret = -1;
GTP_DEBUG_FUNC();
while(retry++ < 5)
{
ret = gtp_i2c_read(client, test, 3);
if (ret > 0)
{
return ret;
}
GTP_ERROR("GTP i2c test failed time %d.",retry);
msleep(10);
}
return ret;
}
/*******************************************************
Function:
Request gpio(INT & RST) ports.
Input:
ts: private data.
Output:
Executive outcomes.
>= 0: succeed, < 0: failed
*******************************************************/
static s8 gtp_request_io_port(struct goodix_ts_data *ts)
{
s32 ret = 0;
GTP_DEBUG_FUNC();
ret = GTP_GPIO_REQUEST(gtp_int_gpio, "GTP INT IRQ");
if (ret < 0)
{
GTP_ERROR("Failed to request GPIO:%d, ERRNO:%d", (s32)gtp_int_gpio, ret);
ret = -ENODEV;
}
else
{
GTP_GPIO_AS_INT(gtp_int_gpio);
GTP_DEBUG("gtp_int_gpio is %d\n",gtp_int_gpio);
ts->client->irq = gpio_to_irq(gtp_int_gpio);
}
ret = GTP_GPIO_REQUEST(gtp_rst_gpio, "GTP RST PORT");
if (ret < 0)
{
GTP_ERROR("Failed to request GPIO:%d, ERRNO:%d",(s32)gtp_rst_gpio,ret);
ret = -ENODEV;
}
GTP_GPIO_AS_INPUT(gtp_rst_gpio);
GTP_DEBUG("\ngtp_rst_gpio request is %d\n",gtp_rst_gpio);
gtp_reset_guitar(ts->client, 20);
if(ret < 0)
{
GTP_GPIO_FREE(gtp_rst_gpio);
GTP_GPIO_FREE(gtp_int_gpio);
}
return ret;
}
/*******************************************************
Function:
Request interrupt.
Input:
ts: private data.
Output:
Executive outcomes.
0: succeed, -1: failed.
*******************************************************/
static s8 gtp_request_irq(struct goodix_ts_data *ts)
{
s32 ret = -1;
const u8 irq_table[] = GTP_IRQ_TAB;
GTP_DEBUG_FUNC();
GTP_DEBUG("\nINT trigger type:%x", ts->int_trigger_type);
ret = request_irq(ts->client->irq,
goodix_ts_irq_handler,
irq_table[ts->int_trigger_type],
ts->client->name,
ts);
if (ret)
{
GTP_ERROR("Request IRQ failed!ERRNO:%d.", ret);
GTP_GPIO_AS_INPUT(gtp_int_gpio);
GTP_GPIO_FREE(gtp_int_gpio);
hrtimer_init(&ts->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
ts->timer.function = goodix_ts_timer_handler;
hrtimer_start(&ts->timer, ktime_set(1, 0), HRTIMER_MODE_REL);
return -1;
}
else
{
GTP_DEBUG("\nRequest IRQ success%x", ts->client->irq);
gtp_irq_disable(ts);
ts->use_irq = 1;
return 0;
}
}
/*******************************************************
Function:
Request input device Function.
Input:
ts:private data.
Output:
Executive outcomes.
0: succeed, otherwise: failed.
*******************************************************/
static s8 gtp_request_input_dev(struct goodix_ts_data *ts)
{
s8 ret = -1;
#if GTP_HAVE_TOUCH_KEY
u8 index = 0;
#endif
GTP_DEBUG_FUNC();
ts->input_dev = input_allocate_device();
if (ts->input_dev == NULL)
{
GTP_ERROR("Failed to allocate input device.");
return -ENOMEM;
}
ts->input_dev->evbit[0] = BIT_MASK(EV_SYN) | BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS) ;
#if GTP_ICS_SLOT_REPORT
input_mt_init_slots(ts->input_dev, 16,0); // in case of "out of memory"
#else
ts->input_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
#endif
__set_bit(INPUT_PROP_DIRECT, ts->input_dev->propbit);
//add touch key
#if GTP_HAVE_TOUCH_KEY
#if GTP_DEBUG_ON
__set_bit(EV_SYN, ts->input_dev->evbit);
__set_bit(KEY_HOME, ts->input_dev->keybit);
__set_bit(KEY_BACK, ts->input_dev->keybit);
__set_bit(KEY_MENU, ts->input_dev->keybit);
__set_bit(KEY_VOLUMEDOWN,ts->input_dev->keybit);
__set_bit(KEY_VOLUMEUP, ts->input_dev->keybit);
#endif
#endif
#if GTP_HAVE_TOUCH_KEY
for (index = 0; index < GTP_MAX_KEY_NUM; index++)
{
input_set_capability(ts->input_dev, EV_KEY, touch_key_array[index]);
}
#endif
#if GTP_GESTURE_WAKEUP
input_set_capability(ts->input_dev, EV_KEY, KEY_POWER);
#endif
#if GTP_CHANGE_X2Y
GTP_SWAP(ts->abs_x_max, ts->abs_y_max);
#endif
input_set_abs_params(ts->input_dev, ABS_MT_POSITION_X, 0, ts->abs_x_max, 0, 0);
input_set_abs_params(ts->input_dev, ABS_MT_POSITION_Y, 0, ts->abs_y_max, 0, 0);
input_set_abs_params(ts->input_dev, ABS_MT_WIDTH_MAJOR, 0, 255, 0, 0);
input_set_abs_params(ts->input_dev, ABS_MT_TOUCH_MAJOR, 0, 255, 0, 0);
input_set_abs_params(ts->input_dev, ABS_MT_TRACKING_ID, 0, 255, 0, 0);
ts->input_dev->name = goodix_ts_name;
ts->input_dev->phys = goodix_input_phys;
ts->input_dev->id.bustype = BUS_I2C;
ts->input_dev->id.vendor = 0xDEAD;
ts->input_dev->id.product = 0xBEEF;
ts->input_dev->id.version = 10427;
ret = input_register_device(ts->input_dev);
if (ret)
{
GTP_ERROR("Register %s input device failed", ts->input_dev->name);
return -ENODEV;
}
#if GTP_WITH_PEN
gtp_pen_init(ts);
#endif
return 0;
}
//************** For GT9XXF Start *************//
#if GTP_COMPATIBLE_MODE
s32 gtp_fw_startup(struct i2c_client *client)
{
u8 opr_buf[4];
s32 ret = 0;
//init sw WDT
opr_buf[0] = 0xAA;
ret = i2c_write_bytes(client, 0x8041, opr_buf, 1);
if (ret < 0)
{
return FAIL;
}
//release SS51 & DSP
opr_buf[0] = 0x00;
ret = i2c_write_bytes(client, 0x4180, opr_buf, 1);
if (ret < 0)
{
return FAIL;
}
//int sync
gtp_int_sync(25);
//check fw run status
ret = i2c_read_bytes(client, 0x8041, opr_buf, 1);
if (ret < 0)
{
return FAIL;
}
if(0xAA == opr_buf[0])
{
GTP_ERROR("IC works abnormally,startup failed.");
return FAIL;
}
else
{
GTP_INFO("IC works normally, Startup success.");
opr_buf[0] = 0xAA;
i2c_write_bytes(client, 0x8041, opr_buf, 1);
return SUCCESS;
}
}
static s32 gtp_esd_recovery(struct i2c_client *client)
{
s32 retry = 0;
s32 ret = 0;
struct goodix_ts_data *ts;
ts = i2c_get_clientdata(client);
gtp_irq_disable(ts);
GTP_INFO("GT9XXF esd recovery mode");
for (retry = 0; retry < 5; retry++)
{
ret = gup_fw_download_proc(NULL, GTP_FL_ESD_RECOVERY);
if (FAIL == ret)
{
GTP_ERROR("esd recovery failed %d", retry+1);
continue;
}
ret = gtp_fw_startup(ts->client);
if (FAIL == ret)
{
GTP_ERROR("GT9XXF start up failed %d", retry+1);
continue;
}
break;
}
gtp_irq_enable(ts);
if (retry >= 5)
{
GTP_ERROR("failed to esd recovery");
return FAIL;
}
GTP_INFO("Esd recovery successful");
return SUCCESS;
}
void gtp_recovery_reset(struct i2c_client *client)
{
#if GTP_ESD_PROTECT
gtp_esd_switch(client, SWITCH_OFF);
#endif
GTP_DEBUG_FUNC();
gtp_esd_recovery(client);
#if GTP_ESD_PROTECT
gtp_esd_switch(client, SWITCH_ON);
#endif
}
static s32 gtp_bak_ref_proc(struct goodix_ts_data *ts, u8 mode)
{
s32 ret = 0;
s32 i = 0;
s32 j = 0;
u16 ref_sum = 0;
u16 learn_cnt = 0;
u16 chksum = 0;
s32 ref_seg_len = 0;
s32 ref_grps = 0;
struct file *ref_filp = NULL;
u8 *p_bak_ref;
ret = gup_check_fs_mounted("/data");
if (FAIL == ret)
{
ts->ref_chk_fs_times++;
GTP_DEBUG("Ref check /data times/MAX_TIMES: %d / %d", ts->ref_chk_fs_times, GTP_CHK_FS_MNT_MAX);
if (ts->ref_chk_fs_times < GTP_CHK_FS_MNT_MAX)
{
msleep(50);
GTP_INFO("/data not mounted.");
return FAIL;
}
GTP_INFO("check /data mount timeout...");
}
else
{
GTP_INFO("/data mounted!!!(%d/%d)", ts->ref_chk_fs_times, GTP_CHK_FS_MNT_MAX);
}
p_bak_ref = (u8 *)kzalloc(ts->bak_ref_len, GFP_KERNEL);
if (NULL == p_bak_ref)
{
GTP_ERROR("Allocate memory for p_bak_ref failed!");
return FAIL;
}
if (ts->is_950)
{
ref_seg_len = ts->bak_ref_len / 6;
ref_grps = 6;
}
else
{
ref_seg_len = ts->bak_ref_len;
ref_grps = 1;
}
ref_filp = filp_open(GTP_BAK_REF_PATH, O_RDWR | O_CREAT, 0666);
if (IS_ERR(ref_filp))
{
GTP_ERROR("Failed to open/create %s.", GTP_BAK_REF_PATH);
if (GTP_BAK_REF_SEND == mode)
{
goto bak_ref_default;
}
else
{
goto bak_ref_exit;
}
}
switch (mode)
{
case GTP_BAK_REF_SEND:
GTP_INFO("Send backup-reference");
ref_filp->f_op->llseek(ref_filp, 0, SEEK_SET);
ret = ref_filp->f_op->read(ref_filp, (char*)p_bak_ref, ts->bak_ref_len, &ref_filp->f_pos);
if (ret < 0)
{
GTP_ERROR("failed to read bak_ref info from file, sending defualt bak_ref");
goto bak_ref_default;
}
for (j = 0; j < ref_grps; ++j)
{
ref_sum = 0;
for (i = 0; i < (ref_seg_len); i += 2)
{
ref_sum += (p_bak_ref[i + j * ref_seg_len] << 8) + p_bak_ref[i+1 + j * ref_seg_len];
}
learn_cnt = (p_bak_ref[j * ref_seg_len + ref_seg_len -4] << 8) + (p_bak_ref[j * ref_seg_len + ref_seg_len -3]);
chksum = (p_bak_ref[j * ref_seg_len + ref_seg_len -2] << 8) + (p_bak_ref[j * ref_seg_len + ref_seg_len -1]);
GTP_DEBUG("learn count = %d", learn_cnt);
GTP_DEBUG("chksum = %d", chksum);
GTP_DEBUG("ref_sum = 0x%04X", ref_sum & 0xFFFF);
// Sum(1~ref_seg_len) == 1
if (1 != ref_sum)
{
GTP_INFO("wrong chksum for bak_ref, reset to 0x00 bak_ref");
memset(&p_bak_ref[j * ref_seg_len], 0, ref_seg_len);
p_bak_ref[ref_seg_len + j * ref_seg_len - 1] = 0x01;
}
else
{
if (j == (ref_grps - 1))
{
GTP_INFO("backup-reference data in %s used", GTP_BAK_REF_PATH);
}
}
}
ret = i2c_write_bytes(ts->client, GTP_REG_BAK_REF, p_bak_ref, ts->bak_ref_len);
if (FAIL == ret)
{
GTP_ERROR("failed to send bak_ref because of iic comm error");
goto bak_ref_exit;
}
break;
case GTP_BAK_REF_STORE:
GTP_INFO("Store backup-reference");
ret = i2c_read_bytes(ts->client, GTP_REG_BAK_REF, p_bak_ref, ts->bak_ref_len);
if (ret < 0)
{
GTP_ERROR("failed to read bak_ref info, sending default back-reference");
goto bak_ref_default;
}
ref_filp->f_op->llseek(ref_filp, 0, SEEK_SET);
ref_filp->f_op->write(ref_filp, (char*)p_bak_ref, ts->bak_ref_len, &ref_filp->f_pos);
break;
default:
GTP_ERROR("invalid backup-reference request");
break;
}
ret = SUCCESS;
goto bak_ref_exit;
bak_ref_default:
for (j = 0; j < ref_grps; ++j)
{
memset(&p_bak_ref[j * ref_seg_len], 0, ref_seg_len);
p_bak_ref[j * ref_seg_len + ref_seg_len - 1] = 0x01; // checksum = 1
}
ret = i2c_write_bytes(ts->client, GTP_REG_BAK_REF, p_bak_ref, ts->bak_ref_len);
if (!IS_ERR(ref_filp))
{
GTP_INFO("write backup-reference data into %s", GTP_BAK_REF_PATH);
ref_filp->f_op->llseek(ref_filp, 0, SEEK_SET);
ref_filp->f_op->write(ref_filp, (char*)p_bak_ref, ts->bak_ref_len, &ref_filp->f_pos);
}
if (ret == FAIL)
{
GTP_ERROR("failed to load the default backup reference");
}
bak_ref_exit:
if (p_bak_ref)
{
kfree(p_bak_ref);
}
if (ref_filp && !IS_ERR(ref_filp))
{
filp_close(ref_filp, NULL);
}
return ret;
}
static s32 gtp_verify_main_clk(u8 *p_main_clk)
{
u8 chksum = 0;
u8 main_clock = p_main_clk[0];
s32 i = 0;
if (main_clock < 50 || main_clock > 120)
{
return FAIL;
}
for (i = 0; i < 5; ++i)
{
if (main_clock != p_main_clk)
{
return FAIL;
}
chksum += p_main_clk;
}
chksum += p_main_clk[5];
if ( (chksum) == 0)
{
return SUCCESS;
}
else
{
return FAIL;
}
}
static s32 gtp_main_clk_proc(struct goodix_ts_data *ts)
{
s32 ret = 0;
s32 i = 0;
s32 clk_chksum = 0;
struct file *clk_filp = NULL;
u8 p_main_clk[6] = {0};
ret = gup_check_fs_mounted("/data");
if (FAIL == ret)
{
ts->clk_chk_fs_times++;
GTP_DEBUG("Clock check /data times/MAX_TIMES: %d / %d", ts->clk_chk_fs_times, GTP_CHK_FS_MNT_MAX);
if (ts->clk_chk_fs_times < GTP_CHK_FS_MNT_MAX)
{
msleep(50);
GTP_INFO("/data not mounted.");
return FAIL;
}
GTP_INFO("Check /data mount timeout!");
}
else
{
GTP_INFO("/data mounted!!!(%d/%d)", ts->clk_chk_fs_times, GTP_CHK_FS_MNT_MAX);
}
clk_filp = filp_open(GTP_MAIN_CLK_PATH, O_RDWR | O_CREAT, 0666);
if (IS_ERR(clk_filp))
{
GTP_ERROR("%s is unavailable, calculate main clock", GTP_MAIN_CLK_PATH);
}
else
{
clk_filp->f_op->llseek(clk_filp, 0, SEEK_SET);
clk_filp->f_op->read(clk_filp, (char *)p_main_clk, 6, &clk_filp->f_pos);
ret = gtp_verify_main_clk(p_main_clk);
if (FAIL == ret)
{
// recalculate main clock & rewrite main clock data to file
GTP_ERROR("main clock data in %s is wrong, recalculate main clock", GTP_MAIN_CLK_PATH);
}
else
{
GTP_INFO("main clock data in %s used, main clock freq: %d", GTP_MAIN_CLK_PATH, p_main_clk[0]);
filp_close(clk_filp, NULL);
goto update_main_clk;
}
}
#if GTP_ESD_PROTECT
gtp_esd_switch(ts->client, SWITCH_OFF);
#endif
ret = gup_clk_calibration();
gtp_esd_recovery(ts->client);
#if GTP_ESD_PROTECT
gtp_esd_switch(ts->client, SWITCH_ON);
#endif
GTP_INFO("calibrate main clock: %d", ret);
if (ret < 50 || ret > 120)
{
GTP_ERROR("wrong main clock: %d", ret);
goto exit_main_clk;
}
// Sum{0x8020~0x8025} = 0
for (i = 0; i < 5; ++i)
{
p_main_clk = ret;
clk_chksum += p_main_clk;
}
p_main_clk[5] = 0 - clk_chksum;
if (!IS_ERR(clk_filp))
{
GTP_DEBUG("write main clock data into %s", GTP_MAIN_CLK_PATH);
clk_filp->f_op->llseek(clk_filp, 0, SEEK_SET);
clk_filp->f_op->write(clk_filp, (char *)p_main_clk, 6, &clk_filp->f_pos);
filp_close(clk_filp, NULL);
}
update_main_clk:
ret = i2c_write_bytes(ts->client, GTP_REG_MAIN_CLK, p_main_clk, 6);
if (FAIL == ret)
{
GTP_ERROR("update main clock failed!");
return FAIL;
}
return SUCCESS;
exit_main_clk:
if (!IS_ERR(clk_filp))
{
filp_close(clk_filp, NULL);
}
return FAIL;
}
s32 gtp_gt9xxf_init(struct i2c_client *client)
{
s32 ret = 0;
ret = gup_fw_download_proc(NULL, GTP_FL_FW_BURN);
if (FAIL == ret)
{
return FAIL;
}
ret = gtp_fw_startup(client);
if (FAIL == ret)
{
return FAIL;
}
return SUCCESS;
}
void gtp_get_chip_type(struct goodix_ts_data *ts)
{
u8 opr_buf[10] = {0x00};
s32 ret = 0;
msleep(10);
ret = gtp_i2c_read_dbl_check(ts->client, GTP_REG_CHIP_TYPE, opr_buf, 10);
if (FAIL == ret)
{
GTP_ERROR("Failed to get chip-type, set chip type default: GOODIX_GT9");
ts->chip_type = CHIP_TYPE_GT9;
return;
}
if (!memcmp(opr_buf, "GOODIX_GT9", 10))
{
ts->chip_type = CHIP_TYPE_GT9;
}
else // GT9XXF
{
ts->chip_type = CHIP_TYPE_GT9F;
}
GTP_INFO("Chip Type: %s", (ts->chip_type == CHIP_TYPE_GT9) ? "GOODIX_GT9" : "GOODIX_GT9F");
}
#endif //For GT9XXF End//
/*
* Devices Tree support,
*/
#ifdef GTP_CONFIG_OF
/**
* gtp_parse_dt - parse platform infomation form devices tree.
*/
static void gtp_parse_dt(struct device *dev)
{
struct device_node *np = dev->of_node;
gtp_int_gpio = of_get_named_gpio(np, "goodix,irq-gpio", 0);
gtp_rst_gpio = of_get_named_gpio(np, "goodix,rst-gpio", 0);
}
/**
* gtp_parse_dt_cfg - parse config data from devices tree.
* @dev: device that this driver attached.
* @cfg: pointer of the config array.
* @cfg_len: pointer of the config length.
* @sid: sensor id.
* Return: 0-succeed, -1-faileds
*/
int gtp_parse_dt_cfg(struct device *dev, u8 *cfg, int *cfg_len, u8 sid)
{
struct device_node *np = dev->of_node;
struct property *prop;
char cfg_name[18];
snprintf(cfg_name, sizeof(cfg_name), "goodix,cfg-group%d", sid);
prop = of_find_property(np, cfg_name, cfg_len);
if (!prop || !prop->value || *cfg_len == 0 || *cfg_len > GTP_CONFIG_MAX_LENGTH) {
return -1;/* failed */
} else {
memcpy(cfg, prop->value, *cfg_len);
return 0;
}
}
/**
* gtp_power_switch - power switch .
* @on: 1-switch on, 0-switch off.
* return: 0-succeed, -1-faileds
*/
static int gtp_power_switch(struct i2c_client *client, int on)
{
static struct regulator *vdd_ana;
static struct regulator *vcc_i2c;
int ret;
if (!vdd_ana) {
vdd_ana = regulator_get(&client->dev, "vdd_ana");
if (IS_ERR(vdd_ana)) {
GTP_ERROR("regulator get of vdd_ana failed");
ret = PTR_ERR(vdd_ana);
vdd_ana = NULL;
return ret;
}
}
if (!vcc_i2c) {
vcc_i2c = regulator_get(&client->dev, "vcc_i2c");
if (IS_ERR(vcc_i2c)) {
GTP_ERROR("regulator get of vcc_i2c failed");
ret = PTR_ERR(vcc_i2c);
vcc_i2c = NULL;
goto ERR_GET_VCC;
}
}
if (on) {
GTP_DEBUG("GTP power on.");
ret = regulator_enable(vdd_ana);
udelay(2);
ret = regulator_enable(vcc_i2c);
} else {
GTP_DEBUG("GTP power off.");
ret = regulator_disable(vcc_i2c);
udelay(2);
ret = regulator_disable(vdd_ana);
}
return ret;
ERR_GET_VCC:
regulator_put(vdd_ana);
return ret;
}
#endif
/*******************************************************
Function:
I2c probe.
Input:
client: i2c device struct.
id: device id.
Output:
Executive outcomes.
0: succeed.
*******************************************************/
static int goodix_ts_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
s32 ret = -1;
struct goodix_ts_data *ts;
u16 version_info;
GTP_DEBUG_FUNC();
//do NOT remove these logs
GTP_INFO("GTP Driver Version: %s", GTP_DRIVER_VERSION);
GTP_INFO("GTP Driver Built@%s, %s", __TIME__, __DATE__);
GTP_INFO("GTP I2C Address: 0x%02x", client->addr);
i2c_connect_client = client;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
{
GTP_ERROR("I2C check functionality failed.");
return -ENODEV;
}
ts = kzalloc(sizeof(*ts), GFP_KERNEL);
printk(KERN_INFO "add kzalloc sizeof is%d\n", sizeof(*ts));
if (ts == NULL)
{
GTP_ERROR("Alloc GFP_KERNEL memory failed.");
return -ENOMEM;
}
#ifdef GTP_CONFIG_OF /* device tree support */
if (client->dev.of_node) {
gtp_parse_dt(&client->dev);
printk(KERN_INFO "\n gtp_parse_dt is %d\n",gtp_parse_dt(&client->dev) );
}
ret = gtp_power_switch(client, 1);
printk(KERN_INFO"\ngtp_power_switch set success%d\n");
printk(KERN_INFO"\ngtp_power_switch is %d\n", gtp_power_switch(client, 1));
if (ret) {
GTP_ERROR("GTP power on failed.");
return -EINVAL;
}
#else /* use gpio defined in gt9xx.h */
gtp_rst_gpio = GTP_RST_PORT;
gtp_int_gpio = GTP_INT_PORT;
#endif
INIT_WORK(&ts->work, goodix_ts_work_func);
printk(KERN_INFO "\n INIT_WORK \n" );
ts->client = client;
spin_lock_init(&ts->irq_lock); // 2.6.39 later
// ts->irq_lock = SPIN_LOCK_UNLOCKED; // 2.6.39 & before
#if GTP_ESD_PROTECT
ts->clk_tick_cnt = 2 * HZ; // HZ: clock ticks in 1 second generated by system
GTP_DEBUG("Clock ticks for an esd cycle: %d", ts->clk_tick_cnt);
spin_lock_init(&ts->esd_lock);
// ts->esd_lock = SPIN_LOCK_UNLOCKED;
#endif
i2c_set_clientdata(client, ts);
printk(KERN_INFO "i2c_set_clientdata is \n");
ts->gtp_rawdiff_mode = 0;
ret = gtp_request_io_port(ts);
if (ret < 0)
{
GTP_ERROR("GTP request IO port failed.");
kfree(ts);
return ret;
}
#if GTP_COMPATIBLE_MODE
gtp_get_chip_type(ts);
GTP_DEBUG("gtp_get_chip_type is \n", gtp_get_chip_type(ts));
if (CHIP_TYPE_GT9F == ts->chip_type)
{
ret = gtp_gt9xxf_init(ts->client);
if (FAIL == ret)
{
GTP_INFO("Failed to init GT9XXF.");
}
}
#endif
ret = gtp_i2c_test(client);
GTP_DEBUG("gtp_i2c_test is %d\n",ret);
if (ret < 0)
{
GTP_ERROR("I2C communication ERROR!");
}
ret = gtp_read_version(client, &version_info);
if (ret < 0)
{
GTP_ERROR("Read version failed.");
}
ret = gtp_init_panel(ts);
GTP_DEBUG("\ngtp_init_panel is %d\n", ret);
if (ret < 0)
{
GTP_ERROR("GTP init panel failed.");
ts->abs_x_max = GTP_MAX_WIDTH;
ts->abs_y_max = GTP_MAX_HEIGHT;
ts->int_trigger_type = GTP_INT_TRIGGER;
}
// Create proc file system
gt91xx_config_proc = proc_create(GT91XX_CONFIG_PROC_FILE, 0666, NULL, &config_proc_ops);
if (gt91xx_config_proc == NULL)
{
GTP_ERROR("create_proc_entry %s failed\n", GT91XX_CONFIG_PROC_FILE);
}
else
{
GTP_INFO("create proc entry %s success", GT91XX_CONFIG_PROC_FILE);
}
#if GTP_ESD_PROTECT
gtp_esd_switch(client, SWITCH_ON);
GTP_DEBUG("gtp_esd_switch \n", gtp_esd_switch(client, SWITCH_ON));
#endif
#if GTP_AUTO_UPDATE
ret = gup_init_update_proc(ts);
GTP_DEBUG("gup_init_update_proc is %d\n", ret);
if (ret < 0)
{
GTP_ERROR("Create update thread error.");
}
#endif
ret = gtp_request_input_dev(ts);
GTP_DEBUG("gtp_request_input_dev %d\n",ret);
if (ret < 0)
{
GTP_ERROR("GTP request input dev failed");
}
ret = gtp_request_irq(ts);
if (ret < 0)
{
GTP_INFO("GTP works in polling mode.");
}
else
{
GTP_INFO("GTP works in interrupt mode.");
}
if (ts->use_irq)
{
gtp_irq_enable(ts);
#if GTP_GESTURE_WAKEUP
enable_irq_wake(client->irq);
#endif
}
/* register suspend and resume fucntion*/
gtp_register_powermanger(ts);
#if GTP_CREATE_WR_NODE
init_wr_node(client);
#endif
return 0;
}
/*******************************************************
Function:
Goodix touchscreen driver release function.
Input:
client: i2c device struct.
Output:
Executive outcomes. 0---succeed.
*******************************************************/
static int goodix_ts_remove(struct i2c_client *client)
{
struct goodix_ts_data *ts = i2c_get_clientdata(client);
GTP_DEBUG_FUNC();
gtp_unregister_powermanger(ts);
#if GTP_CREATE_WR_NODE
uninit_wr_node();
#endif
#if GTP_ESD_PROTECT
destroy_workqueue(gtp_esd_check_workqueue);
#endif
if (ts)
{
if (ts->use_irq)
{
GTP_GPIO_AS_INPUT(gtp_int_gpio);
GTP_GPIO_FREE(gtp_int_gpio);
free_irq(client->irq, ts);
}
else
{
hrtimer_cancel(&ts->timer);
}
}
GTP_INFO("GTP driver removing...");
i2c_set_clientdata(client, NULL);
input_unregister_device(ts->input_dev);
kfree(ts);
return 0;
}
/*******************************************************
Function:
Early suspend function.
Input:
h: early_suspend struct.
Output:
None.
*******************************************************/
static void goodix_ts_suspend(struct goodix_ts_data *ts)
{
s8 ret = -1;
GTP_DEBUG_FUNC();
if (ts->enter_update) {
return;
}
GTP_INFO("System suspend.");
ts->gtp_is_suspend = 1;
#if GTP_ESD_PROTECT
gtp_esd_switch(ts->client, SWITCH_OFF);
#endif
#if GTP_GESTURE_WAKEUP
ret = gtp_enter_doze(ts);
#else
if (ts->use_irq)
{
gtp_irq_disable(ts);
}
else
{
hrtimer_cancel(&ts->timer);
}
ret = gtp_enter_sleep(ts);
#endif
if (ret < 0)
{
GTP_ERROR("GTP early suspend failed.");
}
// to avoid waking up while not sleeping
// delay 48 + 10ms to ensure reliability
msleep(58);
}
/*******************************************************
Function:
Late resume function.
Input:
h: early_suspend struct.
Output:
None.
*******************************************************/
static void goodix_ts_resume(struct goodix_ts_data *ts)
{
s8 ret = -1;
GTP_DEBUG_FUNC();
if (ts->enter_update) {
return;
}
GTP_INFO("System resume.");
ret = gtp_wakeup_sleep(ts);
#if GTP_GESTURE_WAKEUP
doze_status = DOZE_DISABLED;
#endif
if (ret < 0)
{
GTP_ERROR("GTP later resume failed.");
}
#if (GTP_COMPATIBLE_MODE)
if (CHIP_TYPE_GT9F == ts->chip_type)
{
// do nothing
}
else
#endif
{
gtp_send_cfg(ts->client);
}
if (ts->use_irq)
{
gtp_irq_enable(ts);
}
else
{
hrtimer_start(&ts->timer, ktime_set(1, 0), HRTIMER_MODE_REL);
}
ts->gtp_is_suspend = 0;
#if GTP_ESD_PROTECT
gtp_esd_switch(ts->client, SWITCH_ON);
#endif
}
#if defined(CONFIG_FB)
/* frame buffer notifier block control the suspend/resume procedure */
static int gtp_fb_notifier_callback(struct notifier_block *noti, unsigned long event, void *data)
{
struct fb_event *ev_data = data;
struct goodix_ts_data *ts = container_of(noti, struct goodix_ts_data, notifier);
int *blank;
if (ev_data && ev_data->data && event == FB_EVENT_BLANK && ts) {
blank = ev_data->data;
if (*blank == FB_BLANK_UNBLANK) {
GTP_DEBUG("Resume by fb notifier.");
goodix_ts_resume(ts);
}
else if (*blank == FB_BLANK_POWERDOWN) {
GTP_DEBUG("Suspend by fb notifier.");
goodix_ts_suspend(ts);
}
}
return 0;
}
#elif defined(CONFIG_PM)
/* bus control the suspend/resume procedure */
static int gtp_pm_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct goodix_ts_data *ts = i2c_get_clientdata(client);
if (ts) {
GTP_DEBUG("Suspend by i2c pm.");
goodix_ts_suspend(ts);
}
return 0;
}
static int gtp_pm_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct goodix_ts_data *ts = i2c_get_clientdata(client);
if (ts) {
GTP_DEBUG("Resume by i2c pm.");
goodix_ts_resume(ts);
}
return 0;
}
static struct dev_pm_ops gtp_pm_ops = {
.suspend = gtp_pm_suspend,
.resume = gtp_pm_resume,
};
#elif defined(CONFIG_HAS_EARLYSUSPEND)
/* earlysuspend module the suspend/resume procedure */
static void gtp_early_suspend(struct early_suspend *h)
{
struct goodix_ts_data *ts = container_of(h, struct goodix_ts_data, early_suspend);
if (ts) {
GTP_DEBUG("Suspend by earlysuspend module.");
goodix_ts_suspend(ts);
}
}
static void gtp_early_resume(struct early_suspend *h)
{
struct goodix_ts_data *ts = container_of(h, struct goodix_ts_data, early_suspend);
if (ts) {
GTP_DEBUG("Resume by earlysuspend module.");
goodix_ts_resume(ts);
}
}
#endif
static int gtp_register_powermanger(struct goodix_ts_data *ts)
{
#if defined(CONFIG_FB)
ts->notifier.notifier_call = gtp_fb_notifier_callback;
fb_register_client(&ts->notifier);
#elif defined(CONFIG_HAS_EARLYSUSPEND)
ts->early_suspend.level = EARLY_SUSPEND_LEVEL_BLANK_SCREEN + 1;
ts->early_suspend.suspend = goodix_ts_early_suspend;
ts->early_suspend.resume = goodix_ts_late_resume;
register_early_suspend(&ts->early_suspend);
#endif
return 0;
}
static int gtp_unregister_powermanger(struct goodix_ts_data *ts)
{
#if defined(CONFIG_FB)
fb_unregister_client(&ts->notifier);
#elif defined(CONFIG_HAS_EARLYSUSPEND)
unregister_early_suspend(&ts->early_suspend);
#endif
return 0;
}
/* end */
#if GTP_ESD_PROTECT
s32 gtp_i2c_read_no_rst(struct i2c_client *client, u8 *buf, s32 len)
{
struct i2c_msg msgs[2];
s32 ret=-1;
s32 retries = 0;
GTP_DEBUG_FUNC();
msgs[0].flags = !I2C_M_RD;
msgs[0].addr = client->addr;
msgs[0].len = GTP_ADDR_LENGTH;
msgs[0].buf = &buf[0];
//msgs[0].scl_rate = 300 * 1000; // for Rockchip, etc.
msgs[1].flags = I2C_M_RD;
msgs[1].addr = client->addr;
msgs[1].len = len - GTP_ADDR_LENGTH;
msgs[1].buf = &buf[GTP_ADDR_LENGTH];
//msgs[1].scl_rate = 300 * 1000;
while(retries < 5)
{
ret = i2c_transfer(client->adapter, msgs, 2);
if(ret == 2)break;
retries++;
}
if ((retries >= 5))
{
GTP_ERROR("I2C Read: 0x%04X, %d bytes failed, errcode: %d!", (((u16)(buf[0] << 8)) | buf[1]), len-2, ret);
}
return ret;
}
s32 gtp_i2c_write_no_rst(struct i2c_client *client,u8 *buf,s32 len)
{
struct i2c_msg msg;
s32 ret = -1;
s32 retries = 0;
GTP_DEBUG_FUNC();
msg.flags = !I2C_M_RD;
msg.addr = client->addr;
msg.len = len;
msg.buf = buf;
//msg.scl_rate = 300 * 1000; // for Rockchip, etc
while(retries < 5)
{
ret = i2c_transfer(client->adapter, &msg, 1);
if (ret == 1)break;
retries++;
}
if((retries >= 5))
{
GTP_ERROR("I2C Write: 0x%04X, %d bytes failed, errcode: %d!", (((u16)(buf[0] << 8)) | buf[1]), len-2, ret);
}
return ret;
}
/*******************************************************
Function:
switch on & off esd delayed work
Input:
client: i2c device
on: SWITCH_ON / SWITCH_OFF
Output:
void
*********************************************************/
void gtp_esd_switch(struct i2c_client *client, s32 on)
{
struct goodix_ts_data *ts;
ts = i2c_get_clientdata(client);
spin_lock(&ts->esd_lock);
if (SWITCH_ON == on) // switch on esd
{
if (!ts->esd_running)
{
ts->esd_running = 1;
spin_unlock(&ts->esd_lock);
GTP_INFO("Esd started");
queue_delayed_work(gtp_esd_check_workqueue, >p_esd_check_work, ts->clk_tick_cnt);
} else {
spin_unlock(&ts->esd_lock);
}
}
else // switch off esd
{
if (ts->esd_running)
{
ts->esd_running = 0;
spin_unlock(&ts->esd_lock);
GTP_INFO("Esd cancelled");
cancel_delayed_work_sync(>p_esd_check_work);
}
else
{
spin_unlock(&ts->esd_lock);
}
}
}
/*******************************************************
Function:
Initialize external watchdog for esd protect
Input:
client: i2c device.
Output:
result of i2c write operation.
1: succeed, otherwise: failed
*********************************************************/
static s32 gtp_init_ext_watchdog(struct i2c_client *client)
{
u8 opr_buffer[3] = {0x80, 0x41, 0xAA};
GTP_DEBUG("[Esd]Init external watchdog");
return gtp_i2c_write_no_rst(client, opr_buffer, 3);
}
/*******************************************************
Function:
Esd protect function.
External watchdog added by meta, 2013/03/07
Input:
work: delayed work
Output:
None.
*******************************************************/
static void gtp_esd_check_func(struct work_struct *work)
{
s32 i;
s32 ret = -1;
struct goodix_ts_data *ts = NULL;
u8 esd_buf[5] = {0x80, 0x40};
GTP_DEBUG_FUNC();
ts = i2c_get_clientdata(i2c_connect_client);
if (ts->gtp_is_suspend || ts->enter_update)
{
GTP_INFO("Esd suspended!");
return;
}
for (i = 0; i < 3; i++)
{
ret = gtp_i2c_read_no_rst(ts->client, esd_buf, 4);
GTP_DEBUG("[Esd]0x8040 = 0x%02X, 0x8041 = 0x%02X", esd_buf[2], esd_buf[3]);
if ((ret < 0))
{
// IIC communication problem
continue;
}
else
{
if ((esd_buf[2] == 0xAA) || (esd_buf[3] != 0xAA))
{
// IC works abnormally..
u8 chk_buf[4] = {0x80, 0x40};
gtp_i2c_read_no_rst(ts->client, chk_buf, 4);
GTP_DEBUG("[Check]0x8040 = 0x%02X, 0x8041 = 0x%02X", chk_buf[2], chk_buf[3]);
if ((chk_buf[2] == 0xAA) || (chk_buf[3] != 0xAA))
{
i = 3;
break;
}
else
{
continue;
}
}
else
{
// IC works normally, Write 0x8040 0xAA, feed the dog
esd_buf[2] = 0xAA;
gtp_i2c_write_no_rst(ts->client, esd_buf, 3);
break;
}
}
}
if (i >= 3)
{
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F == ts->chip_type)
{
if (ts->rqst_processing)
{
GTP_INFO("Request processing, no esd recovery");
}
else
{
GTP_ERROR("IC working abnormally! Process esd recovery.");
esd_buf[0] = 0x42;
esd_buf[1] = 0x26;
esd_buf[2] = 0x01;
esd_buf[3] = 0x01;
esd_buf[4] = 0x01;
gtp_i2c_write_no_rst(ts->client, esd_buf, 5);
msleep(50);
#ifdef GTP_CONFIG_OF
gtp_power_switch(ts->client, 0);
msleep(20);
gtp_power_switch(ts->client, 1);
msleep(20);
#endif
gtp_esd_recovery(ts->client);
}
}
else
#endif
{
GTP_ERROR("IC working abnormally! Process reset guitar.");
esd_buf[0] = 0x42;
esd_buf[1] = 0x26;
esd_buf[2] = 0x01;
esd_buf[3] = 0x01;
esd_buf[4] = 0x01;
gtp_i2c_write_no_rst(ts->client, esd_buf, 5);
msleep(50);
#ifdef GTP_CONFIG_OF
gtp_power_switch(ts->client, 0);
msleep(20);
gtp_power_switch(ts->client, 1);
msleep(20);
#endif
gtp_reset_guitar(ts->client, 50);
msleep(50);
gtp_send_cfg(ts->client);
}
}
if(!ts->gtp_is_suspend)
{
queue_delayed_work(gtp_esd_check_workqueue, >p_esd_check_work, ts->clk_tick_cnt);
}
else
{
GTP_INFO("Esd suspended!");
}
return;
}
#endif
#ifdef GTP_CONFIG_OF
static const struct of_device_id goodix_match_table[] = {
{.compatible = "goodix,gt9xx",},
{ },
};
#endif
static const struct i2c_device_id goodix_ts_id[] = {
{ GTP_I2C_NAME, 0 },
{ }
};
static struct i2c_driver goodix_ts_driver = {
.probe = goodix_ts_probe,
.remove = goodix_ts_remove,
.id_table = goodix_ts_id,
.driver = {
.name = GTP_I2C_NAME,
.owner = THIS_MODULE,
#ifdef GTP_CONFIG_OF
.of_match_table = goodix_match_table,
#endif
#if !defined(CONFIG_FB) && defined(CONFIG_PM)
.pm = >p_pm_ops,
#endif
},
};
//add power way
static struct regulator *regulator_init(const char *name, int minvol, int maxvol)
{
struct regulator *power;
int ret;
power = regulator_get(NULL,"ldo5");// name);
if (IS_ERR(power)) {
printk("Nova err,regulator_get fail\n!!!");
return NULL;
}
// gpower = power;
if (regulator_set_voltage(power, minvol, maxvol)) {
printk("Nova err,cannot set voltage\n!!!");
regulator_put(power);
return NULL;
}
ret = regulator_enable(power);
return (power);
}
static inline void regulator_deinit(struct regulator *power)
{
regulator_disable(power);
regulator_put(power);
}
/*******************************************************
Function:
Driver Install function.
Input:
None.
Output:
Executive Outcomes. 0---succeed.
********************************************************/
static int __init goodix_ts_init(void)
{
s32 ret;
tp_regulator = regulator_init(CTP_POWER_ID,
CTP_POWER_MIN_VOL, CTP_POWER_MAX_VOL);
if ( !tp_regulator ) {
printk("Nova tp init power failed");
ret = -EINVAL;
return ret;
}
GTP_DEBUG_FUNC();
GTP_INFO("GTP driver installing...");
goodix_wq = create_singlethread_workqueue("goodix_wq");
if (!goodix_wq)
{
GTP_ERROR("Creat workqueue failed.");
return -ENOMEM;
}
#if GTP_ESD_PROTECT
INIT_DELAYED_WORK(>p_esd_check_work, gtp_esd_check_func);
gtp_esd_check_workqueue = create_workqueue("gtp_esd_check");
#endif
ret = i2c_add_driver(&goodix_ts_driver);
return ret;
}
/*******************************************************
Function:
Driver uninstall function.
Input:
None.
Output:
Executive Outcomes. 0---succeed.
********************************************************/
static void __exit goodix_ts_exit(void)
{
GTP_DEBUG_FUNC();
GTP_INFO("GTP driver exited.");
i2c_del_driver(&goodix_ts_driver);
if (goodix_wq)
{
destroy_workqueue(goodix_wq);
}
}
module_init(goodix_ts_init);
module_exit(goodix_ts_exit);
MODULE_DESCRIPTION("GTP Series Driver");
MODULE_LICENSE("GPL");
Android 上层修改:
--- a/frameworks/base/data/keyboards/Generic.kl
+++ b/frameworks/base/data/keyboards/Generic.kl
@@ -121,7 +121,7 @@ key 98 NUMPAD_DIVIDE
key 99 SYSRQ
key 100 ALT_RIGHT
# key 101 "KEY_LINEFEED"
-key 102 MOVE_HOME
+#key 102 MOVE_HOME
key 103 DPAD_UP
key 104 PAGE_UP
key 105 DPAD_LEFT
@@ -158,7 +158,7 @@ key 128 MEDIA_STOP
# key 136 "KEY_FIND"
# key 137 "KEY_CUT"
# key 138 "KEY_HELP"
-key 139 MENU
+key 139 APP_SWITCH
key 140 CALCULATOR
# key 141 "KEY_SETUP"
key 142 SLEEP
@@ -191,7 +191,7 @@ key 168 MEDIA_REWIND
key 169 CALL
# key 170 "KEY_ISO"
key 171 MUSIC
-key 172 HOME
+key 102 HOME
# key 173 "KEY_REFRESH"
# key 174 "KEY_EXIT"
# key 175 "KEY_MOVE"
c9mrc9mr
|